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ABSTRACT

This paper provides an overview of the ate of the art of microsmulation modeling applied to activity-
based travel forecasting. The paper defines what is meant by microsmulation and discusses why
microsmulation might be a preferred approach to activity- based forecasting in many applications. The
issue of synthesizing and updating characteristics of the population being smulated is addressed in some
detail. Examples of various types of microsmulation models which have been developed to date are
provided, including microasmulation models of auto ownership, resdential mobility, route choice and
network performance, as well as activity-based travel forecasting models per se. The paper concludes
with adiscussion of research and development issues associated with the continuing development of
operationa microamulation models. These include: further evauation of population synthesizing and
updating methods, determination of gppropriate levels of model disaggregation; establishing appropriate
linkages between mode components, examination of the Satigtica properties of microsmulation
models, and demondtration of the computationa feasibility of these very computer-intensve modding
sysems.

1 INTRODUCTION

The purpose of this paper is to provide an overview of microsmulation concepts and methods which
are gpplicable to activity-based travel forecagting.

Including this very brief introductory section, the paper is divided into Six sections. Section 2 defines the
term microamulation. Section 3 discusses the reasons why microsimulation may prove useful or even
necessary for at least some types of activity-based travel forecasting applications. Section 4 discusses a
key step in the microsmulation process -- synthesizing and/or updating the attributes of the population

or sample of individuas whose behavior isbeing smulated. Section 5 then briefly presents severd
microsmulation modds drawn from arange of applications, including activity-based travel forecasting.
Findly, Section 6 discusses some of the research and development issues and directions associated with
improving the operationa applicability of microamulation methods.



2. WHAT ISMICROSIMULATION?

While many current modeling efforts are microsmulation based, the term itsdlf is rarely defined.
Simulation generdly refersto an gpproach to modeling systems which possess the following two key
characteristics.

1 The system isa dynamic one, whose behavior must be explicitly modeled over time.

2. The system's behavior is complex. In addition to the dynamic nature of the system
(which generdly initsdf introduces complexity) this complexity typicaly has many possible sources,
induding:

@ complex decison rules for the individud actors within the system;

(b) many different types of actors interacting in complex ways,

(© system processes which are path dependent (i.e., the future system state
depends both on the current system state and explicitly on how the system evolves from this
current sate over time);

(d) the sysem is generdly an “open” onein which exogenous “forces’ operate on
the system over time, thereby affecting the internd behavior of the system; and/or

(e ggnificant probabilistic dements (uncertainties) exist in the system, with respect
to random variations in exogenous inputs to the system and/or the stochastic nature of
endogenous processes at work within the system.

Note that in goesking of complexity, we are not merdy referring to the difficulty in
dedling with very large models with large datasets defined over many attributes for
hundreds if not thousands of zones. Rather, we are referring to the more fundamenta
notion of the difficulty in estimating likely future sysem states given the inherently
complex nature of the system's behavioral processes.

Given the system's complexity, closed-form andytica representations of the system are generdly not
possible, in which case numerica, computer-based agorithms are the only feasible method for
generating estimates of future system sates. Similarly, given the system's path dependencies and
openness to time-varying exogenous factors, system equilibrium generdly is not achieved, hence
rendering equilibrium-based model s ingppropriate. 1n the absence of explicit equilibrium conditions, the
future date of the system again generdly can only be estimated by explicitly tracing the evolutionary peth
of the system over time, beginning with current known conditions. Such numerica, computer-based
models which trace a system's evolution over time are what we generdly refer to as Smulation modes.

Note that conventiona four-stage travel demand models most clearly are not smulation models under
this definition. Conventiond four-stage modes are static equilibrium modeds which predict a path-
independent future year end state without concern for either the initia (current) system state or the path
traveled by the syslem from the current to the future year sate. Thusin adopting a smulation gpproach
to modding activity and travel behavior, oneis explicitly rgecting the conventiond tatic equilibrium
view of urban systemsin favor of a dynamic representation of such systems-- avery sgnificant



decison, both conceptualy and practically.

The prefix “micro” smply indicates that the smulation modd is formulated a the disaggregate or micro
level of individua decisonmaking (or other relevant) units such asindividuad persons, households and
vehides. A full discussion of the relaive merits of disaggregate versus more traditiond aggregate
modeling methods is beyond the scope of this paper.’ | bdieve, however, it isfair to say that a broad
consensus exigts within the activity/travel demand modding community that disaggregate modeling
methods possess cond derable advantages over more aggregate gpproaches (including minimization of
model bias, maximization of modd datidicd efficiency, improved policy sengtivity, and improved model
trandferability -- and hence usability within forecasting gpplications), and that they will continue to be the
preferred modeling approach for the foreseeable future. With respect to microsmulation, the relevant
guestion isto what extent does microamulation represent afeasible and ussful mechanism for using
disaggregate modd s within various forecasting gpplications.

To begin to explore the way in which microsmulation can be used to gpply an activity-based model ina
forecasting context, first consder the well known short-run policy andysisforecasting procedure known
as sample enumeration. In this procedure, a disaggregate behavioral modd of some form has been
developed (say, for sake of illustration, an activity-based modd which predicts the number of out- of-
home activitiesin which aworker will participate either before or after work, dong with the location,
duration and trip chaining implications associated with these activities). A representative sample of
decision-makers (in this case workers) typicaly exigts, snce such asampleis generaly required for
mode development. This sample defines dl reevant inputs to the model with respect to the attributes of
dl theindividudsin the sample. The short-run impact of various policies which might be expected to
affect activity scheduling and trip chaining can then be tested by “implementing” a given palicy, and then
using the mode to compute the response of each individud to this policy (where, in this case, the
response may involve some combination of changes in the number, timing, duration and/or location of
out-of-home activities). Summing up the responses of the individuas provides an unbiased estimate of
the aggregate “system” response to the policy in question.

! For elegant and concise discussions of the rationale for disaggregate mode's see, among others, Mackett
[1990] and Goulias and Kitamura [1992, 1996].



Figure 1 very smply summarizesthis procedure. Thisfigure can be taken as a very generic
representation of a microsmulation process for the case of a short-run forecad, in which dl modd
inputs except those relating to the policy tests of interest are fixed, and hence all that needsto be
smulated are the behaviora responses of the sampled decision makers to the given policy stimuli.

Thus, in such cases, “sample enumeraion” and “microamulation” are essentidly synonymous, and use of
the latter term Smply emphasizes the disaggregate, dynamic® nature of the modd. The mgjority of
activity-based microsmulation models devel oped to date basicdly fal into this category of short-run,
sample enumeration-based models.

Sample enumeration is a very efficient and effective forecasting method providing:

1. arepresentative sample is available;

2. oneis undertaking a short-run forecast (so that the sample can be assumed to
remain representative over the time frame of the forecast); and

3. the sample is gppropriate for testing the policy of interest (i.e., the policy applies
in auseful way to the sample in question).

Many forecasting Situations, however, violate one or more of these conditions. Perhaps most
commonly, oneis often interested in forecasting over medium to long time periods, during which time the
available sample will clearly become unrepresentative (people will age and even die; workers will
change jobs and/or residentid locations, new workers with different combinations of attributes will join
the labor force; etc.). The question then becomes how to properly “update’ the samplein order to
maintain its representativeness. In other cases, the sample may not be adequate to test a given policy
(e.g., it contains too few observations of a particularly important sub-population for the given policy
test). If thisisthe case, how does one “extend” the sample so that agatisticaly reliable test of the
policy can be performed? Findly, their may be cases in which a suitable sample smply does not exist
(e.g., perhaps the model has been transferred from another urban area). 1n such a case, how does one
“generate’ or synthesize arepresentative sample?

Indl of these cases, microsmulation provides ameans of overcoming the limitations of the available
sample. In the case of the sample becoming less and |ess representative over time, Figure 2 presents a
smple microamulation framework in which the sample is explicitly updated over time. The behavior
predicted at each point in time is then based on a representative sample for that point in time.

If the origind sampleis ether inadequate or missing atogether, then, as shown in Figure 3, an additiona
step must be inserted into the modd, involving synthesizing a representative sample from other
avallable (typicaly more aggregate) data such as census data.

2 In such cases, the dynamics involved are usudly quite short-run (e.g., activity scheduling over the course of a
day or perhaps at most aweek; short-run dynamic adaption to a new set of constraints/opportunities; etc.),
particularly relative to the much longer-term demographic and socio-economic dynamics which are discussed
immediately below.



The remainder of this paper provides more detailed discussion of issues and methods associated with
Figures2 and 3. Thefina point to note at this stage of the discussion is that these figures assume that
the disaggregate behaviora modd isitself a dynamic one which must be stepped through time (and
hence itsincluson within the time loop). Many current activity-based modds are fairly gatic in nature
(or incorporate very short-run dynamics, as discussed in Footnote 2). 1n such cases, the behaviora
modd can be removed from the time loop and executed only once, using the desired future year sample
which has been estimated through the microsmulation procedure. In order to keep the discusson as
ample as possble, however, aswell asto emphasize what | believe is the need for explicitly dynamic
models of urban processes, the “fully dynamic” representation of the process as contained in Figures 2
and 3isgenerdly used as the basis for discussion throughout the rest of the paper.

3. WHY MICROSIMULATE?

As briefly discussed in the previous section, a primary motivation for adopting a microamulation
modeing gpproach is that it may well be the best (and in some cases perhaps the only) way to generate
the detailed inputs required by disaggregate models. The strength of the disaggregate modeling
goproachisin being able to fix decison-makers within explicit choice contexts with respect to:

1 the salient characterigtics of the actorsinvolved;

2. the salient characterigtics of the choice context (in terms of the options involved,
the congtraints faced by the actors, etc.) and

3. any context- specific rules of behavior which may apply.

This inherent strength of the disaggregate approach is clearly compromised if one cannot provide
adequatdy detalled inputs to the model. Such compromises occur in at least two forms. One involves
using overly aggregate forecast inputs, resulting in likely aggregation biases in the forecasts. The other
involves developing more aggregate modelsin the first place so as to reduce the need for disaggregate
forecast input data, thereby building the aggregation bias into the modd itsdlf. | believe that a strong
case can be made that a primary reason for the relatively dow diffusion of disaggregate modedling
methods into travel demand forecasting practice is due to the difficulty practitioners have in generating
the disaggregate forecast inputs required by these methods.® As described in the previous section,
microamulation in principle eiminates this problem by explicitly generating the detalled inputs required
for each actor being smulated.

A second driving force for usng microsmulation relates to the outputs required from the activity/trave
behavior model. Many emerging road network assignment procedures are themselves microsmulation
based (TRANSIMS', DYNASMART?®, INTEGRATIONS, etc.) and hence require quite micro-leve

% The only significant disaggregate mode used in operationa settings today is the disaggregate logit mode choice
mode. Even in thisingtance, the number of explanatory socio-economic variables used in the models tends to
be rlaively limited, presumably due to the input forecasting problem.

‘ Barrett, et. al. [1995]



inputs from the travel forecasting modd.

A third point is that, despite the obvioudy large computationa requirements of alarge microamulation
modd, it is quite possible that microsmulation will prove to be a computationdly efficient method for
dedling with large-scale forecasting problems. It is certainly the case that a“micro” list-based approach
to storing large patia databases is far more efficient than “aggregate’ matrix-based approaches. To
illugtrate this, condder a very smple example in which one might want to keep track of the number of
workers by their place of residence, place of work, number of household automobiles and total number
of household members. Further assume that there are 1000 traffic zones, three auto ownership levels
(eg. 0, 1, 2+) and five household size categories (e.g., 1, 2, 3, 4, 5+). To savethisinformationin
matrix format would require afour-dimensiona matrix with atotal of 1000x1000x3x5 = 15x10° data
items. Also note that alarge number of the cdlsin this matrix will have the value zero, either because
they areinfeasible (or at least extremdy unlikdy; e.g., 2+ autos in a one-person household) or because
one smply does not observe non-zero vaues for many cdls (as will be the case for many origin-
degtination (O-D) pairs).

In alig-based approach, one record is created for each worker, with each record containing the
worker's residence zone, employment zone, number of household autos and household size. Thus, four
data storage locations are required per worker, meaning that as long as there are less than (15x10°), 4
= 3.75x10° workersin this particular urban area the list-based gpproach will require less memory (or
disk space) than the matrix-based approach to store the same information. Obvioudy, as the number of
worker attributes which need to be stored increases, the relaive superiority of the list-based approach
increases.

®> Mahmassani, et. al. [1994] and Hu and Mahmassani [1995].

®Van Aerde and Y ager [1988a, 1988b].



The advantages of lis-based data Structures for large-scae spatid gpplications have been recognized
for at least twenty years.” “Aggregate’ urban simulation modes such as NBER? and CAM?®, both
developed in the 1970's used list-based data structures.® The key point to be made here with respect
to microsmulation is that once one beginsto think in list-based terms, the conceptual leap to
microsmulation modd designsisardativey smdl one. Or, turning it around, if onetakesa
microsmulation gpproach to moded design, efficient list-based data structures quickly emerge asthe
“natura” way for storing information.

Whether microsmulation possesses other inherent computational advantages relaive to more aggregate
methodsisless clear. Certainly one can advance the proposition that by working at the micro leve of
the individud decisonmaker, relatively smple, clear and computationdly efficient models of process
can generdly be developed. Whether this efficiency in computing each actor's activities trandaesinto
overdl computation time savings relative to other gpproaches given the large number of actors being
smulated remains to be seen.

A fourth argument in favor of microsmulation isthet it raises the possibility of emer gent behavior, that
is of predicting outcomes which are not “hard wired” into the modd. Simple examples of emergent
behavior of rdevance to this discussion might include the generation of single-parent households by a
demographic amulator as aresult of more fundamenta processes deding with fertility and household
formation and dissolution, or the prediction of unexpected activity/travel patterns by an activity-based
model as aresult of the occurrence within the smulation of certain combinations of household needs,
congtraints, etc.

The importance of emergent behavior within travel demand forecadting is @ least two-fold. Firdt, it
offers the potentid for the development of parsmonious modds in the sense that relatively smple (but
fundamenta) rules of behavior can generate very complex behavior. Second, while dl modds areto at
least some degree “ captive’ to past behavior through use of historical data to estimate model
parameters, the potentia for emergent behavior increases the likelihood of the model generating
unanticipated outcomes, and hence for “ departures from the trend” to occur.

Findly, it may well be the case that microsmulation mode s will ultimatdy prove eeder to explain or to
“sd|” to decisgonmakers rdative to more aggregate models. Since microsmulation models are

’ See, for example, Wilson and Pownall [1976].
8 Ingram, G.K., et. al. [1972].
° Birch, et. al. [1974].

19 Conversdy, many current commercia travel demand modeling software packages require one to work within
amarix-based data structures -- aregtriction which can become more and more inconvenient not to mention
computationdly burdensome, as one attempts to implement more “ behavioraly oriented” procedures within
them.



formulated at the leve of individua actors (workers, home-owners, parents, etc.), relatively clear and
ample“stories’ can be told concerning what the modd is trying to accomplish (e.g., the model estimates
the out-of-home activities which a given household will undertake on atypica weekday, and when ad
where these activities will occur) to which lay people can reedily reate. The technicd details of the
modd's implementation typicaly will be very complex, but the fundamenta conceptua designis, in most
cases, surprisingly smple to convey to others.

4, POPULATION SYNTHESISAND UPDATING

Microamulation models by definition operate on a set of individual actors whose combined smulated
behavior define the system state over time. As discussed in Section 2, in short-run forecasting
goplications, arepresentative sample may often exist which can define the set of actors whose behavior
isto be smulated (Figure 1). In medium- and long-term forecasting gpplications, however, even if such
asample exigs for the base year of the amulation, this sample can not generdly be assumed to remain
representative over the forecast time period. Asdiscussed in Sections 2 and 3, in such casesthe
microsmulation model must be extended to include methods for updating the attributes of the set of
actors so that they continue to be representative at each point of time within the smulation (Figure 2).
In addition, in many gpplications (particularly larger-scale, “generd purpose’ regiond modding
gpplications), the base year sample of actors either may not be available or may not be suitable for the
task at hand. In such cases, the microsmulation model must o include a procedure for synthesizing
asuitable base year sat of actors as input to the dynamic behaviord smulation portion of the model
(Figure 3). Each of these two processes — synthes's and updating — are discussed in the following
two subsections.

Before discussing synthesis and updating methods, however, one other important model design issue
needs to be addressed. The discussion to this point in the paper has assumed that the set of actors
being amulated is asample drawn in an gppropriate way from the overal population. Thisis, indeed,
the case in mogt of the microamulation models developed to date, including the rdatively few medium-
to longer-term forecasting models reported in the literature, and regardless of whether the base sample
is obtained through survey or synthess methods. Goulias and Kitamura [1992], for example, used
sample households from the Dutch Mohility Pand in their microamulation modd of Dutch household
demographics and mobility (MIDAS -- Microanalytic Integrated Demographic Accounting System).
Mackett [1985, 1990], as another example, used a 1% sample of households synthesized from more
aggregate data in his housng market microsmulation model (MASTER -- Micro-Andyticd Smulation
of Trangport, Employment and Residence).

Situations exist, however, in which it may be useful or even necessary to work with the entire
population of actors within the microsmulation, rather than a representative sample. At least two
magor reasons exist for why one might prefer to work at the population level rather than with asample.

Firgt, Stuations exist in which computing population totals based on weighted sample results can be



difficult to do properly.™* Consider, for example, the problem of Smulating residential mobility. Assume
that one is working with a 5% sample of households. Then, on average, each household in the sample
will carry a“weight” of 20 in terms of its contribution to the calculation of population totals. If itis
determined within the smulation that a given sample household will move from its current zone of
resdencei to another zonej, does thisimply that 20 identical households make the same move? The
answer is, probably not. More complex weighting schemes can undoubtedly be devised, but it may
prove to be conceptualy smpler, more accurate and perhaps even computationaly more efficient to
ded directly with the resdentia mobility decisions of every household and thereby avoid the weighting
problem entirely.

All sample-based models inherently represent aform of aggregationin that each observation in the
sample “standsfor” or “represents’ n actua population members (where, asillustrated above, /nisthe
average samplerate). These n population members will possess at |east some heterogeneity and hence
vaiahility in behavior. In many gpplications (microsmulation or otherwise) this “aggregation problem” is
negligible, and the efficiency in working with a (small) sample of actors rather than the entire population
isobvious. In many other gpplications, such as the one described above, however, use of a sample may
introduce aggregation biasinto the forecast unless consderable care (and associated additiona
computational effort) istaken. In such cases, the relative advantages of the two gpproaches are far less
clear.

Second, as one moves from short-run, smal-scale, problem-specific gpplications (the domain of most
activity-based smulation models to date) to longer-run, larger-scale, “ genera purpose” gpplications
(e.g., testing awide range of policieswithin aregiond planning context -- presumably an eventud god
of at least some activity-based modding efforts), the definition of what condtitutes a“representative’
sample becomes more ambiguous. A sample which iswell suited to one policy test or agpplication may
not be suitable for another. Thisis particularly the case when one requires adequate representation
spatidly (typicaly by place of resdence and place of work) as well as socio-economicdly. Insuch
cases, a“sufficiently generdized” sample may be so large and/or sufficiently complex to generate that it
might be “just as easy” to work with the entire population.

In trying to build a case for population-based microsmulations, one certainly cannot ignore the
computationa implications (in terms of both processing time, memory and data storage requirements) of
such an approach. Thisissueisreturned to in Section 6. For the moment, the points to note are;

1 the conceptua case for population-based microsmulation does exi, in at least
some gpplications,

2. computing capabilities and cogts are continuoudy improving; and

3. severd populationbased models are currently under devel opment, the most
notable, of course, being the TRANSIMS modd [Barrett, et. al., 1995].

1 AsMackett [1990] observes, these often involve market simulations in which demand-supply interactions are
difficult to deal with on a sample basis.



The synthes's and updating methods discussed in the following sub-sections do not depend in any
ggnificant conceptua way on whether they are operating on a sample or the entire population. For
amplicity of discusson, however, the presentations in these sections assume that it is a disaggregated
representation of the entire population which is either being synthesized or updated.

4.1  Population Synthesis

All population synthesis methods start with the basic assumption that reliable aggregate information
concerning the base year population is avallable, generdly from census data. These datatypicaly come
in the form of one-, two- or possibly multi-way tables, asillusrated in Figure 4. Collectively, these
tables define the margind distributions of each attribute of the population of interest (age, sex, income,
household size, etc.). In addition any two-way or higher cross tabulations provide information
concerning the joint digtribution of the variables involved. The full multi-way digtribution of the
population across the entire set of attributes, however, is not known. The synthesistask, as shownin
Figure 4, isto generate alig of individua “population units’ (in the case of Figure 4, households) which
isdatigticaly consstent with the available aggregete data.

All synthesis procedures devel oped to date use some form of Monte Carlo smulation to draw a
“redization” of the disaggregate population from the aggregate data. At least two general procedures
for doing this currently exist. The first gppears to have been origindly proposed by Wilson and Powndll
[1976]. In this method, the margind and two-way aggregate distributions for a given zone (or census
tract) are used sequentially to construct the specific attribute values for a given person (or household,
etc.) living in thiszone. For example, assume that we are synthesizing households with three attributes,
X1, Xz and X3. Also assume that we have the margina distribution for X; (which defines the margind
probabilities P(X1=x,) for the various vaid vaues x, for this atribute. We dso have thejoint
digtributions for X; and X, and for X, and X3 (which can be used to define the conditiona probailities
P(X2=x2|x1) and P(X3=x3|%z). An dgorithm for generating specific vaues (Xin, Xon, Xan) for household h
isthen:

1. generate a uniform random number w, on therange [0,1]. Given wy, determine
X1n from the digtribution P(X;=Xy1);

2. generate a uniform random number u,,. Given Xy, and Wy, determine Xy, from
the distribution P(X,=Xon|X1); and

3. generate a uniform random number us. Given X, and g, determine Xz, from
the digtribution P(X3:X3h |X2h) .

This process is then repeated until al households, each with a specific set of attributes, have been
generated.” This procedure is conceptualy straightforward, easy to implement, and has been used in

12 Wilson and Powndll proposed this agorithm for the case of generating asmall sample. In this case “sampling
with replacement” (as occurs in the dgorithm outlined) is acceptable. [f an entire population set isto be



severd models, including Mackett [1985, 1990] and Miller, et. al. [1987].

As Wilson and Powndll note, this process implies a causa structure in terms of the order in which the
conditional probabilities are computed (i.e., in the assumptions concerning which attributes are
conditiond upon which others). In practical gpplicationsit is not dways clear to what extent this
conditioning is guided by theoretical congderations as opposed to the availability of a given set of cross
tabulations. Alternatively, sufficient redundancy often exists within available census tables that “multiple
paths’ through these tables may exig, leaving it to the modeler to determine which path is*“best” for
computing the joint attribute sets (e.g., perhaps one has two-way tabulations of X; by X3 aswdl asthe
other two-way tabulations previoudy assumed; in such a case, which order of conditioning is best?).

More fundamentaly, this procedure ignores the potentia for significant multi-way correlations among the
variables, except for the very limited two-way correlations permitted within the arbitrarily assumed
conditional probability structure. Thisisapotentialy serious problem. A recently proposed procedure
by Beckman, et. al. [1995] for usein TRANSIMS, however, directly addresses thisissue.

The TRANSIMS procedure d so starts with aggregate census tabulations for each censustract. In
addition, however, it utilizes Public Use Microdata Sample (PUMY) files which consst of 5%
representative samples of “admost complete’ census records for collections of censustracts. Adding up
the records in aPUMS provides an esimate of the full multi-way digtribution across dl attributes for the
collection of censustracts. If one assumes that each census tract has the same correlation structure as
its associated PUMSS, then the PUM S multi-way digtribution provides important additiona information
to the synthesis process. Skipping over anumber of important details, primary stepsin the

TRANSIMS procedure are:

1. For each Public Use Micro Area (PUMA) congtruct the multi-way distribution
of attributes from the corresponding PUMS.

2. A two-gep iterative proportiond fitting (IPF) procedure is used to estimate
amultaneoudy the multi-way distributions for each census tract within a PUMA, such that
each digtribution satisfies the margind distributions for the census tract (as defined by
aggregate census tables) and has the same overal correlation structure as the PUM S-based
multi-way digtribution. This IPF procedure can be interpreted as the congtrained maximum
entropy estimate of the multi-way distribution given the known information and the avallable
PUMS data.

3. Individual households are then randomly drawn from the full multi-way
distribution for each census tract.

generated, then the dgorithm shown must be dtered so that it involves “sampling without replacement”. That is,
after each household is drawn, the aggregate household distributions shoud be modified to reflect the fact that
this household has been removed from the digtribution, thereby dtering dightly the probability distributions for
subsequent households.



The TRANSIMS procedure is rdatively straightforward to implement and appears to perform well in
validation tests to date [Beckman, et. al., 1995]. In particular, it clearly performs better than either
drawing households directly from the PUMS multi-way distribution (i.e,, without “filtering” this
digtribution through the census tract margind distributions by means of the two-step 1PF procedure) or
drawing households directly from the tract marginds (i.e., asmplified verson of the Wilson and Powndl
procedure). While more operationa experience is obvioudy required with population synthesis
methods, the generd thrust exemplified by the TRANSIM S approach appears to be well founded: use a
“full information” approach which accounts for multi-way correlaion among the attributes being
synthesized.

4.2  Population Updating

Once the base year population has been provided to the model, either through asurvey sample or a
synthes's procedure, this population must be “updated” each time step within the Smulation run. The
nature of this updating obvioudy depends on the attributes involved, the processes being smulated, the
gze of the smulation time gep, etc. Assuming, however, that one is Smulating household processes
over anumber of years, in one year time steps, demographic and socio-economic processes which
need Smulating as part of the updating process may well include:

. aging;

. births and degths;

. marriages and divorces®

. other changesin household structure (adult children leaving the home, etc.);
. non-family household formation and dissolution;

. changesin education leve;

. changes in employment status (entry/exit to/from the labor market, change in job
location and/or type, €tc.);

. changesin resdentid location;

. changes in automobile holdings (types and numbers of vehicles); etc.

With the exception of aging, which is a completely deterministic accounting process, each of these
processes require a sub-model of some sort. Demographic and household structure attributes are
generdly handled using very smple probaility models. ether fixed transtion rates based on empirica
data (eg., fertility rates for women by age group), or Smple parametric probability functions (e.g.,
MIDAS uses smple logit models to determine household type trangition probabilities). Indl such
cases, Monte Carlo smulation methods are used to generate househol d- specific “events’ (birth of a
child, etc.) on a household-by-household and year by year basis.

13 Generdly these terms are used to represent the more generic processes of “couples’ forming and dissolving,
whether or not actua marriages and divorces occur.



Trestment of employment status, resdentid location and automobile holdings varies far more widdy
across modds, depending on their application. Each of these can be asgnificant part (or even the
primary focus) of the behaviora modeling component of the microsmulation (see Section 5).
Alternativey, if the agpplication permits, one or more of these might be handled in terms of “trangition
probabilities’ in the same way as the demographic variables discussed above.

Aswith synthesizing procedures, limited experience exigs, a least within the travel demand forecasting
community, with demographic/socio-economic updating methods. For examples of specific methods
used to date, see, Miller, et. al. [1987], Kitamura and Goulias [1991], Goulias and Kitamura[1992],
and Oskamp [1995]. All of these examples should, | believe, be treated as being illutrative and
experimentd in nature rather than in any way definitive in terms of “the’” method to use. Consderable
experience with demographic forecasting obvioudy exists among demographers. Traditiond
demographic forecasting, however, does not attempt to work at the fine spatia scale required by our
travel demand forecasting applications. Our chalenge isto adapt existing methods and/or develop new
ones which can operate reliably a the census tract/traffic zone leve required for travel demand
forecadting.

5. EXAMPLE APPLICATIONS

Much of the trave-related microsmulation modeling which has been undertaken to date has occurred in
gpplication areas other than activity-based modeing per se. These application areasinclude: auto
ownership, resdential mobility, and dynamic network assgnment. Sub-section 5.1 briefly reviews
representative models from these gpplication areas, with emphasis on their relationship to activity/travel
demand moddling. Section 5.2 then briefly discusses examples of activity-based microsmulation
modding.

51 Miscellaneous Application Areas.

1. Microsmulation of auto ownership. Some of the earliest applications of microamulation in the
trangportation field involved dynamic modeling of auto ownership (e.g., Barnard and Hensher [1982]
and Daly [1982]). Behaviord modeling of auto ownership has dmost dways occurred asa*“ stand
done’ activity, outside of the “normal” activity/travel demand moddling process™ Within the travel
demand modeling process, auto ownership has typicaly been treated as just one socio-economic
“exogenous’ input to the demand process. For some purposes this may be adequate, in which case a
“trangtion probakility” trestment within amicrosmulation modeing system would be adequate. Many
current policy issues, however, (notably concerning emissions and energy use) rdate in no smal way to
household decisions concerning the number and types of vehicles which they own, aswell as on the
interactions between vehicle holdings and (auto) travel demand. Thus, a strong case exigts for including
explicit modds of household automobile choice within the overdl travel demand modeling process
[Miller and Hassounah, 1993].

4 MIDAS [Goulias and Kitamura, 1992], discussed below, represents a notable exception in this regard.



2. Microsmulation of housing markets and residential mobility. Many of the microamulation
mode s developed to date fdl into this generd category. Early work includes that undertaken by
Wegener [1983], Mackett [1985, 1990] and Miller, et. al. [1987]. This continuesto be an active area
for ressarch efforts, including work by Spiekermann and Wegener [1993] and Oskamp [1995].%

> Work in this areais aso proceeding by a collaborative team of Canadian researchers from the University of
Toronto, McMaster University, Lava Univerdty and the University of Cdgary. Thisprojectisinavery
preliminary stage at time of writing and has yet to publish results.



Given the central role which lifecycle stage and household Structure play in determining resdentid
mohbility, these modd s typicaly ded in detail with population and household synthesis and updating --
issues of consderable importance to activity-based models (and ones which have aready been dedlt
with in Section 4). In additionto the technica issues relating to synthesis and updating aready
discussed, note that the discussion to this point in the paper has been relatively indifferent to the “unit of
andysis’ within microamulation modds. In residentid mobility modeling it has long been recognized that
both households and persons (with the later being further sub-divided into workers, non-workers, etc.)
must be maintained within the modding system, given that some decisions are inherently household-leve
in nature (e.g., resdentia choice), while others inherently occur at the levd of the individud (eg., change
jobs), with interactions between both levels continuoudly occurring™ (e.g., the decision to change jobs
may have ramifications for household income levels and hence the suitability/affordability of the current
resdentid |ocation; the decison on whether/where to move may be influenced by the impact which the
move would have on commuting times and cogts). As aresult, such modes generdly maintain both
households and persons (and mappings between the two) as explicit elements of their database. This
dud representation presumably will prove useful to activity-based models, both as they move to more
household-leve formulations and as they become more integrated with residential mobility models within
more comprehensve microamulation frameworks.

In addition, of course, housing market models are intended to forecast medium- to long-term evolution
of the spatid digtribution of the resdentid population, ancther key input into activity-based models.
Condderable debate currently exigts, particularly within the United States, concerning “land use -
transportation interactions’, the nature and extent of “induced demand”, etc. Development of credible,
integrated models of resdentid (and employment) location processes and activity/travel demand seems
to me to be a particularly important step towards investigating the medium- to long-term impact of both
land use and transportation system policies and hence towards contributing in a andyticaly sound way
to this extremely important policy debeate.

3. Microsmulation of auto route choice and network performance. Asmentioned briefly in
Section 3, many current and emerging road network assgnment procedures are microsimulationbased
(e.g., Barrett, et. al. [1995], Hu and Mahmassani [1995], Mahmassani, et. al. [1994]). A detailed
review of these procedures is well beyond the scope of this paper. Three points to note about these
models, however, are:

i) As has aready been discussed Section 3, the input requirements of these network
microsmulation models may in some ingtances drive the design criteriafor activity- based travel
forecasting models. TRANSIMS is perhaps the best example of this point, in that the network
performance/emissons modeing needs are clearly in this case driving the overdl system design.

i) The “interface’” between the activity-based models and the network models generally
does not smply consst of the outputs from the one becoming the inputs to the other. Typicaly,

16 See, for example, Birch, et. al. [1974].



dynamic route assgnment procedures simultaneoudy determine route choice and trip departure time
choice (given assumptions about desired arriva times). DYNASMART perhaps best typifies
operaiond capabilitiesin thisregard. Thus, these modds“intrude’ into at least one component of
the activity-based modding domain: the “micro-scheduling” of trips. Again, this may wel have
design implications for activity-based models to the extent that they are intended to be integrated
with network microsmulation modes.

iif) Most current network microsimulation models gppear to have been devel oped with
short-run (and, in some cases, red-time) forecasting applications in mind, often specificdly relating
to ITS applications. Whether these modds are well suited for medium- to long-term forecasting
goplicationsis, | believe, an unanswered question at this point intime. Issuesinclude the leve of
detail of network representation often required by these models (e.g., are we able to specify the
traffic 9gnd settings and offsets twenty years into the future, as may be required by some models),
aswell asthe match between network model precision (e.g., second by second calculations of
individud vehicles performance) and the accuracy of the activity/travel demand modd's predictions
(even with microamulation!), given the inevitable uncertainties associated with medium- to long-term
forecadting.

5.2  Activity-Based Microsmulation Models

Given the inherently disaggregate nature of activity-based models, as well as the fact that these models
typically incorporate some level of dynamics, one might argue that alarge portion of the extensive
activity-based modding literature should be included in this section.*” This has not been attempted here.

Rather emphad's has been placed on including model s which emphasi ze the connection between activity
modeling and travel demand forecagting in at least a quas-operationa manner, and which do thiswithin
an explict microamulation framework.

Bonsdl [1982] provides avery early example of the gpplication of microamulation to the problem of
predicting commuters participation in a proposed ridesharing program. Although very specidized in
nature, the modd is noteworthy given itstime period of development, aswell asfor the clarity with
which the paper discusses generd issues of microsmulation modeling.

Axhausen [1990] reports on a condderable “tradition” in Germany of activity-based microsmulation
modeling of destination and mode choice, tracing back to Kreibich'sinitid work in the late 1970's
[Kreibich, 1978, 1979]. Much of this German work has been generdly inaccessible to North American
audiences since, with the exception of Kreibich's papers, most of it has only been published in German.
Axhausen's contribution was to combine an activity chain smulation mode (which had been the focus

Y Very explicitly smulation-based activity-based models such as STARCHILD [Recker, et. al., 198643,
1986h] and the smulation mode developed by Ettema, et. al. [1993] particularly come to mind.



of thework of Kreibich, et. al.) with amesoscopic traffic flow smulator.*® This paper is noteworthy in
at least two respects. Firg, it represents an early attempt to link an activity-based mode directly to a
network assgnment modd -- clearly an essentid step in developing atrue activity-based travel demand
forecasting capability. Second, the decision to use amesoscopic rather than microscopic traffic
amulator provides a useful counterpoint to the genera North American trend of leaping directly to the
extreme micro leve for this later type of model.

MIDAS (Microanaytic Integrated Demographic Accounting System) [Kitamura and Goulias, 1991,
Goulias and Kitamura, 1992, 1996] represents an extremely important milestone in the development of
trangportation-related microsmulation models. Developed for the Dutch government, MIDAS isan
operationd microsmulation-based forecasting tool. Starting with a nationwide sample of households
obtained from the Dutch Mohility Panel, the mode has two main components: a socio-economic and
demographic component which smulates household trangitions, including births, deeths, household type
changes, aswdll as changesin persons employment status, persona income, driver's licence possession
and education; and a“mobility component” which smulates auto ownership, trip generation and modal
gplit. Although the gpplication is somewhat atypicd (i.e., predicting overdl nationd travel levels rather
than intra- urban trip-making), the model contains most of the attributes of the activity-based travel
forecasting microsmulation modeling “ paradigm” presented in Section 2 of this paper. In particular, the
model's treatment of the demographic and socio-economic updating problem is very strong.

In 1992 FHWA commissioned four groups (RDC, Inc., Cdiper Corporation, MIT, and the Louigana
Transportation Research Center — LTRC) to propose new modeling systems to replace the
conventiond four-stage system. It is noteworthy that two of the four groups (RDC and LTRC)
proposed activity-based microsmulation designs, while athird (MIT) proposed a disaggregate activity-
based approach which certainly could be implemented within a microsmulation framework [ Spesr,
1994]. Further, both RDC's SAMSS (Sequenced Activity-Mobility System) and LTRC's SMART
(Smulation Modd for Activities, Resources and Travel) postulated an integrated, comprehensve
modeling system beginning with land use and flowing through activity/travel decisions to dynamic
assgnment of vehicles to networks (and hence cdculation of congestion, emissons, ec.).

Since the FHWA study, a prototype of AMOS (Activity-Mobility Smulator), the centrd component of
the proposed SAMS system, has been developed and used in Washington, D.C. to evduate dternative
TDM drategies [RDC, 1995]. Within the context of this paper, AMOS represents an example of an
activity-based travel microamulator. As currently implemented, it represents a stand-aone tool for
andyzing a pecific type of short-run trangportation policies which is not currently tied to ether a
demographic smulator (asin the case of MIDAS) or anetwork simulator (asin the case of Axhausen's
modd). More generaly, however, it represents a potentid stepping-stone towards amore
comprehensive microsmulation system such as SAM S which would include these other microsmulation

18 Mesoscopic network models generaly work at the leve of the individual vehide, but make use of much more
amplified models of vehicle performance than the microscopic models discussed above. For adetalled
discussion of the potential merits of mescopic models, see Miller and Hassounah [1993].



components, among others.

Findly, TRANSIMS [Barrett, et. al., 1995] represents by far the most ambitious attempt to date to
develop a comprehensve microsmulation travel demand forecasting modd. The TRANSIMS program
iswdl documented in the literature, aswell asin other presentations at this conference, and so no
attempt will be made in this paper to provide a complete description of the modd. From the point of
view of this paper it is perhaps sufficient to observe that the TRANSIMS work is a the present time
both defining much of the Sate-of-the-art in microsmulation modeling and chalenging other researchers
to develop their own thoughts and models. Regardless of the extent to which TRANSIMS per se ever
becomes an operationd planning mode, the impetus which it has provided to the development of
microsmulation modds and to the evolution of travel demand modeling in generd is of consderable
importance.

6. RESEARCH & DEVELOPMENT ISSUES AND DIRECTIONS

With the exception of MIDAS (and, possibly, AMOS), virtudly dl travel demand-related
microsmulation models developed to date must be classed as “ prototypes’, designed to demondtrate
the feagbility of microsmulation and/or to investigate very specific policy questions. Moving
microsmulation “out of the laboratory” and into operationd practice will require cons derable additiond
research and development. Some of the key issues, in my opinion, which need to be addressed in this
R&D effort include the fallowing.

1. Continued development and testing of population synthesizing and updating methods. Just
as conventiond four-stage models depend fundamentally on the population and employment inputs
provided to them, so the microsmulation systems envisioned within this paper depend on the population
demographic and socio-economic “inputs’ to the behaviord components of the model. While the
TRANSIMS procedure for population synthesis appears very attractive (and emerges out of &t least
twenty years of experiencein the literature with related but smpler methods), clearly much more
operationa experienceis required before such a method can be considered a proven tool. Updating
methods smilarly have clearly been demondtrated to be feasible but require much further incrementa
experimentation, improvement and “ optimization”.

2. Determination of appropriate levels of aggregation. Eveninamicrosmulation modd,
aggregation inevitably occurs. Aggregation can occur in gpace (typicdly through the use of zones asthe
gpatid unit of analyss, even when modding individua decision-makers within these zones), time
(primarily in terms of the time step used to move the mode through smulated time: amode which
operates on aone-year time step istemporaly more aggregete than one which steps through time on a
month by month basis), attributes (no matter how detailed the model's description of an individud, there
is dways some point beyond which two individuaswill be consdered “identicd”; individuds are,
however, exactly that, and by treating them asidentical we are, in fact, introducing some amount of



aggregation into the andysis'®), and behavior (e.g., perhapsin agiven modd dl types of non-grocery
shopping — everything from buying shoes to buying anew car — might be aggregated into asingle
activity category).

A mgor rationde for the disaggregate modeling approach is the minimization of aggregetion bias. Inthe
theoretical development of our disaggregate models it is often easy to pretend that these modd s truly
operate a the leve of unique individuas acting within their actud individuad choice contexts. It must be
recognized, however, that any operationd modd will inevitably reach somefinite limit of disaggregation
(where this limit may be defined by data availability, theoretica insght, methodologica capabilities,
computationd feasbility, and/or gpplication requirements), beyond which aggregate “homogeneity”
assumptions are inevitably required. Thisis neither good nor bad, but rather smply afact of mode
building. Thekey point isto recognize this fact and to make intelligent decisions concerning where finer
levels of disaggregation are both required and achievable, and where more “ aggregate’
representations either can be used because of the nature of the problem (relative homogeneity does
exig, system date estimates are robust with respect to this component of the model, etc.) and/or must
be used due to inherent limitations in our modeling capatilities.

Over and above agenera concern with finding appropriate levels of disaggregation in our
microgmulations, pecific issuesinclude:

)] Treatment of space. Many activity-based models developed to date are surprisingly
“agpatid”. If such modds areto be practicd travel demand forecasting tools they must ultimetely be
able to generate autto, transit, walk, etc. trips from point to point in space. Or isit zoneto zonein
gpace? Condderable uncertainty currently exists about what level of spatia disaggregeation is
required to support forecasting requirements for emissons analyss, etc. Nor isit currently clear
what level of spatia disaggregation islikely to be supportable with respect to data and
computationa capabilities, even given modern Geographic Information Systems (GIS), etc.

i) Treatment of time. Different urban processes operate within very different time
frames. Residential and employment location processes operate over periods of years, typically
involving brief periods of intense activity (e.g., looking for a new home or job), followed possibly by
decades of inactivity. Most demographic process operate on gpproximately ayearly scae,
Activity/travel decisons, however, occur more typicaly within daly or weekly time frames. Tallpipe
emissions from avehicle depend criticaly on the second- by-second decisions of the vehicl€s driver.

Within each of these components of the overal travel demand process decisions need
to be made concerning the best time step to use in modeling the given component. |Is
second- by-second simulation of vehicle performance redly necessary or can alonger
time step (say 5 seconds) be used? Isthe day or the week the “fundamentad” step in

19 Section 4 discussed this same issue in terms of the use of asample of individuas, in which case each sampled
individud inevitably ends up represented an aggregete group of “smilar” individuas within the model.



modeing household activity and travel dynamics (or is hour-by-hour or minute-by-
minute smulation required)? Can one year time steps by used to smulate residentia
mobility decisons (and if o, how does one handle the “microdynamics’ of the housing
search process which typically occurs over a period of afew weeks or, a most,
months)?

These questions become even more problematica as one attempts to bring these model
components into a comprehensive modeling system. It is easy to speak about the need
for integrated land use - trangportation modds, for example, but how does one actualy
integrate these models, given their very different time frames?

iif) Selection of attributes. Modds vary in terms of the definition and detail of the
attributes of persons, households, etc. being modeled. Decisions concerning these attributes
obvioudy affect, among other components of the modd, the nature of the population synthesis and
updating procedures required to generate and update these attributes over time. Tradeoffs may well
often occur between the ability of the synthesis/updating procedures to reliably provide a given
attribute and the relative importance of the attribute within the behaviord model.

3. Linkages among model components. As has been mentioned at various points throughout this
paper, linkages between location choice, activity/travel decisons and network assgnment and
performance modd s represent both a trend and a desirable feature in microsmulation model
development. In particular, andyss of the full range of possible impacts of a given policy may often
require ardatively comprehensive modeling system, given the wide range of possible short-run and
long-run responses available to individuas and householdsin many cases.

While conceptudly attractive, comprehensive microsmulation modes obvioudy bring with them a host
of model design issues, not the least of which is the computationd feasibility of such models. It isto be
expected that many modders will continue to develop individua modes for various components of the
overdl process, both as a means for best making progress in the development of these components, and
as ameans for analyzing problems directly addressable by such models. At the sametime, other
modelers will continue with the task of devel oping comprehensve modding systems, often with
amplified versons of the current state- of-the-art component models. Both types of activities obvioudy
are mutudly reinforcing and are to be encouraged.

4. Demonstration of the statistical properties of microsmulation models. Almos dl

micros mulation models include stochagtic dements. Surprisingly little attention seems to have been paid
to the statistical properties of these models®® Thismay partidly be due to the preliminary nature of
maost modes: when one is busy trying to show that the thing smply works at dl one may be forgiven for
not worrying what the average outcome of a hundred replications of the same modd run might look like.

20 Axhausen [1990] is one of the few authors who spends more than a sentence or so on theissue. Many do
not rasetheissue at al.



It may a0 reflect ardluctance on the part of modders to come to grips with the issue, given both the
magnitude of the computationa effort to generate a single modd run and the complexity of the outcome
of the amulation experiment -- i.e, amassvely multi-dimengond data sructure defining the find system
date.

Come to grips with thisissue, however, we mug, for the output of any single run of a stochastic model is
amply one random “draw” from the unknown distribution of possible outcomes. The representatives of
this sngle outcome (and hence its usefulness for planning purposes) is dso by definition unknown. In
“classcd” sochadtic amulations, this problem is resolved by executing many replications of the run,

each one of which generates additiond information concerning the underlying unknown distribution of
outcomes. This process continues until one has generated a sufficient number of observations to be able
to say Satigticaly meaningful things about the distribution of possible outcomes -- in particular to
provide rdigble estimates of the means and variances of the find system date.

Much work is required to address thisissue in the case of activity-based travel demand microsmulation
models. Congderable experimentation is needed to determine the statistical properties of both
individua modd components and of overdl modeding syssems — in particular to develop guiddines
concerning when replications need to be undertaken and, if performed, how many are generaly
required. As Axhausen [1990] points out, many standard methods exist for reducing internd variation
within smulation modd runs, and the usefulness and gppropriateness of using such methods must be
investigated. Finaly, thought must be given to how one does “average’ over a set of smulated
outcomes in cases of such complexity and high dimensondity as are typica of our applications.

5. Demonstration of computational feasibility. One should never make the mistake of
underestimating the computationd intengty of microamulation modds. In addition to requiring
considerable amounts of CPU time, the memory and disk storage requirements of alarge
microsmulation modd are enormous. Early microsmulation modds quickly bumped up againgt
computationa limits and/or made significant design comprisesin order to maintain computational
feadbility. With continuing rapid expansion of the computing power codt-€effectively avalable to both
researchers and planners, the definition of what is computationaly feasible is being upgraded dmost
daly. Indeed, the fact thet this paper is being presented at this conference is due dmost entirely to the
extraordinary computing power which is now routingly available to us (relative to even afew years ago),
aswd| asto the universally held expectation that this trend of increasing computing power will continue
into the foreseeable future,

Nevertheless, the computationa challenges associated with large-scale microsmulations are sgnificant,
to say theleast. Thisis particularly the case for populationbased (as opposed to sample-based)
models. The magnitude of the problem aso grows as we move towards more integrated,
comprehensive models (e.g., combined models of residentia and employment location choice,
activity/travel and network assgnment).

Ultimately, dl of the issues discussed above come together and interact with the issue of computationa
feadbility in a dassc engineering design problem involving tradeoffs between “cost” and “ performance’.



Every increase in modd disaggregation, every extenson of its comprehengveness, every improvement
inits gatistica reliability comesat a cost in computer time, memory and sorage. Conversdly, at any
point in time, current computationa capabilities establish upper boundsin terms of what is cogt-
effectivey doable within the modd.

One can think of disaggregetion leve, extent of comprehensveness, datistica reliability and
computationd requirements (among undoubtedly others) as fundamentd attributes or dimengons of
microamulation mode design. We have only become to explore the design “ space” defined by these
dimengons At this point in time we have only the faintest notions of where feasible regionslie within
this space, let done where “optima operating points’ might be found.

Above dl dse, what isrequired is consgderably more experience in building and usng such models. The
TRANSIMS project is providing invaluable experience in this regard, but we should not be counting on
any one project to provide dl the answers. The more experience which is gained by more peoplein
more gpplications within more computing environments, the better our modes will ultimately be — and
the more likely it will be that we will end up developing the models which we actudly need and can use.
In any modeling application, a certain amount of “empirical wisdom” is required before the model can
be reliably gpplied. Such empirical wisdom can only be achieved through doing: by trying, by faling, by
experimenting, and, throughout the process by learning and thereby eventudly (hopefully) succeeding.
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